Measuring quantum coherence in multislit interference
نویسندگان
چکیده
منابع مشابه
Measuring Quantum Coherence with Entanglement.
Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted...
متن کاملMultislit interference patterns in high-order harmonic generation in C60
We study high-order harmonic generation in C60 molecules interacting with a linearly polarized intense short laser pulse at nearand mid-infrared wavelengths, using an extension of the so-called three-step or Lewenstein model to the molecular case. The results exhibit modulations in the plateaus of the spectra at the longer wavelengths, which are present for ensembles of aligned as well as rando...
متن کاملCoherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System
The time evaluation of quantum entropy in a four-level double- type atomic system is theoretically investigated. Quantum entanglement of the atom and its spontaneous emission fields is then discussed via quantum entropy. It is found that the degree of entanglement can be increased by the quantum interference induced by spontaneous emission. The phase dependence of the atom-field entanglement is...
متن کاملQuantum coherence generated by interference-induced state selectiveness
The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to ‘simple’ atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.
متن کاملCoherence in quantum estimation
The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it allows to derive the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2017
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.95.042110